The NanoTracker 2 is an optical tweezers platform based on research-grade inverted optical microscopes and designed for sensitive manipulation, force and tracking experiments. With the NanoTracker 2, the user can trap and track particles from several µm down to 30nm with the ability to control, manipulate and observe samples in real time with nanometer precision and femtoNewton resolution.
Multiple Traps
Precise optical trapping and 3D-manipulation
Trap and track particles from several µm to 30 nm: Beads, oil bubbles, bacteria, single-molecules, and small cells. For live cells studies and materials science.
Smallest Forces
Precise force measurements
Quantitative sub-pN force measurements and position tracking at MHz sampling rates. Ultra-stable 1064 nm trapping laser.
Versatile
Couple with confocal microscopy
Combine with standard optical microscopies, AFM and Raman-spectroscopy. Simultaneous optical trapping, tracking, and advanced fluorescence investigation.
FEATURES
NanoTracker 2 - designed for quantitative force measurements
With the NanoTracker 2, the user can trap and track particles from several µm down to 30nm with the ability to control, manipulate and observe samples in real time with nanometer precision and femtoNewton resolution.
NanoTracker technology provides precisely quantifiable and reproducible measurements of particle/cell interactions. The system delivers precise information about single molecule mechanics and may also be used to determine mechanical characteristics such as adhesion, elasticity or stiffness on single molecules.