The broad-band x-ray flux from synchrotron radiation sources has revitalized the relatively old experimental technique known as x-ray absorption spectrometry. X-ray absorption spectroscopy measures the attenuation of an x-ray beam passing through a sample, just as do the more familiar infrared or UV-visible techniques. Typical x-ray energies are on the order of 300 eV to 30 keV or more, compared to visible light of 23 eV and infrared energies of about 0.050.5 eV. High energy x-ray absorption transitions involve core electrons which are only slightly perturbed by chemical changes in the valence electrons, hence each element has characteristic absorption edges at which the x-ray energy is just sufficient to liberate a particular type of core electron. Since edges are generally well separated in energy, x-ray absorption is a technique which can uniquely probe the environment of any element from carbon through the transuranics. A generalized x-ray absorption spectrum is illustrated at right.
CANBERRA has been the leader in the development and production of Germanium Array Detectors for this application. Herein you will find a brief summary of our capabilities and products.