Typical applications for high-intensity radiation sources in the ultraviolet and blue spectral range are UV radiation curing, solar simulation, UV sterilization, UV test systems, and UV sewer rehabilitation. For process-based applications with repetitive measurement tasks, broadband radiometers such as the X11 with RCH-116-4 are generally the most effective solution because of their ease of use, value for money, and low re-calibration cost.
Spectroradiometers such as the BTS256-UV are an alternative to broadband radiometers that provide additional information about the spectral distribution of radiation sources. The spectral information is particularly important if the wavelength-dependent aging behavior of broadband UV lamps must be investigated or if the irradiance must be measured in different wavelength ranges. This is also important if sources of differing spectral distribution must be measured. For this purpose, broadband radiometers ideally require separate calibration factors that take these spectral differences into account. This is not necessary with spectroradiometers. In addition, spectroradiometers offer more precise measured values than broadband radiometers. This is due to their spectral sensitivity function which corresponds to a rectangular function in the selected spectral measuring range. For precise measurements in the UV spectral range, very good stray-light rejection is necessary, which is not provided by the array spectrometers typically available on the market.